B protein of bacteriophage mu is an ATPase that preferentially stimulates intermolecular DNA strand transfer.

نویسندگان

  • A Maxwell
  • R Craigie
  • K Mizuuchi
چکیده

A DNA strand-transfer reaction is an early step in the transposition of phage Mu. It has been shown that an efficient reaction in vitro requires, in addition to buffer and salt, only the Mu A protein, Mu B protein, host protein HU, ATP, and Mg2+. We have determined that, of the three protein factors involved, only the Mu B protein has an ATPase activity. The Mu B ATPase is stimulated by Mu A protein and DNA but not by either of these factors alone. Double-stranded DNA is a much better cofactor than single-stranded DNA, but there is no apparent sequence specificity. In the absence of the Mu B protein and/or ATP, the intermolecular Mu DNA strand-transfer reaction is extremely inefficient, and the strand-transfer products are predominantly the result of an intramolecular reaction. This contrasts with the efficient intermolecular reaction that occurs if Mu B protein and ATP are provided. The Mu B protein, in the presence of Mu A protein and protein HU, therefore, seems to facilitate interactions between potential DNA target sites and pairs of Mu DNA ends.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady-state kinetic analysis of ATP hydrolysis by the B protein of bacteriophage mu. Involvement of protein oligomerization in the ATPase cycle.

The DNA strand-transfer reaction of bacteriophage Mu requires Mu B protein and ATP for high efficiency. These factors facilitate the capture of target DNA by the donor protein-DNA complex. To understand the mechanism of the Mu B ATPase cycle in the Mu DNA strand-transfer reaction, we undertook a steady-state kinetic analysis of Mu B ATPase. The results reveal complex properties of the ATPase ac...

متن کامل

The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks

RecN is a cohesin-like protein involved in DNA double-strand break repair in bacteria. The RecA recombinase functions to mediate repair via homologous DNA strand invasion to form D-loops. Here we provide evidence that the RecN protein stimulates the DNA strand invasion step of RecA-mediated recombinational DNA repair. The intermolecular DNA tethering activity of RecN protein described previousl...

متن کامل

The bacteriophage 434 repressor dimer preferentially undergoes autoproteolysis by an intramolecular mechanism.

Inactivation of the lambdoid phage repressor protein is necessary to induce lytic growth of a lambdoid prophage. Activated RecA, the mediator of the host SOS response to DNA damage, causes inactivation of the repressor by stimulating the repressor's nascent autocleavage activity. The repressor of bacteriophage lambda and its homolog, LexA, preferentially undergo RecA-stimulated autocleavage as ...

متن کامل

The phiX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition.

Initiation of Escherichia coli DNA synthesis primed by homologous recombination is believed to require the phiX174-type primosome, a mobile priming apparatus assembled without the initiator protein DnaA. We show that this primosome plays an essential role in bacteriophage Mu DNA replication by transposition. Upon promoting transfer of Mu ends to target DNA, the Mu transpososome undergoes transi...

متن کامل

Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks.

Ku protein binds to DNA ends and is a cofactor for the DNA-dependent protein kinase. Both of these components are involved in DNA double-strand break repair, but it has not been clear if they function indirectly, by sensing DNA damage and activating other factors, or if they are more directly involved in the processing and rejoining of DNA breaks. We demonstrate that intermolecular ligation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 84 3  شماره 

صفحات  -

تاریخ انتشار 1987